Objective
The objective of STORM was to develop a tool capable of simulating CMOS and bipolar device processes.
The objective of the project is to develop a tool capable of simulating complementary metal oxide semiconductor (CMOS) and bipolar device processes. The end product is a simulation environment, the 'Project Code', incorporating advanced modules for process and device simulation, optimization algorithms, and a user interface. Incorporated within the code will be a set of more accurate models for the simulation of newly developed processes such as rapid thermal annealing (RTA), impurity diffusion from polysilicon and silicide, trench isolation, high energy and multilayer ion implantation, optical lithography, chemical vapour deposition (CVD), and glass reflow.
3 versions of the project code will be produced:
a first (prototype) version integrating the different state of the art simulators;
an intermediate version merging the new or improved models for process simulation, sensitivity analysis according to a significant list of process parameters, and first tentative optimization algorithms;
the final version which includes consolidated models and optimization programmes.
3 main work packages exist. The first develops improved models for process simulation. It is divided in 3 subpackages, dealing with dopant diffusion, thermal oxidation and topography, and ion implantation. The second addresses optimization techniques for device design with the aim of setting up an automatic optimization tool, and the third covers software integration. The project code aims to satisfy the future needs of the integrated circuit (IC) industry. In so far as it will simulate both CMOS and bipolar basic technologies, it will be able to handle the optimization of future bipolar complementary metal oxide semiconductor (BICMOS) processes as well. Advanced models for process simulation have been developed for ion implantation, dopant diffusion in polysilicon, RTA precipitation mechanisms, thermal oxidation, glass reflow and CVD. Optimization tools are under development following 2 alter native approaches: response surface method, and minimization techniques.
The end product is a simulation environment, the "Project Code", incorporating advanced modules for process and device simulation, optimisation algorithms, and a user interface. Incorporated within the code is a set of more accurate models for the simulation of newly developed processes such as rapid thermal annealing, impurity diffusion from polysilicon and silicide, trench isolation, high energy and multilayer ion implantation, optical lithography, chemical vapour deposition, and glass reflow.
STORM was organised around three main work-packages. The first one was developing improved models for process simulation. For management reasons, it was divided in three sub-packages, dealing with dopant diffusion, thermal oxidation and topography, and ion implantation. The second work-package addressed optimisation techniques for device design with the aim of setting up an automatic optimisation tool, the third covered software integration and global validation on industrial applications.
STORM is able to simulate both CMOS and bipolar basic technologies, and to handle the optimisation of future BICMOS processes as well.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences inorganic chemistry inorganic compounds
- natural sciences chemical sciences electrochemistry electrolysis
- natural sciences physical sciences astronomy planetary sciences planetary geology
- engineering and technology materials engineering
- natural sciences physical sciences electromagnetism and electronics semiconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Data not available
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Data not available
Coordinator
38243 Meyland
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.