Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Development of Self-lubricating Nanocomposite Coatings impregnated with in-situ formed MoS2 for Tribological Applications

Objective

Use of self-lubricated coatings in dynamic contacting parts of the system not only reduces complexity, weight, and cost to the system, but also improves the performance to a great extent by reducing friction and wear. Unlike liquid lubricants, the release of various toxic and harmful chemicals to the environment can also be avoided. So, a self-lubricated surface with a long lifetime is a promising one to meet future challenges. The most common solid lubricants are graphite and transition metals layered dichalcogenides, among which MoS2/WS2 has a great prominence. In this proposal, electrodeposition of Co-W alloys impregnated with MoS2 and WC nanoparticles will be carried out to form nanocomposite coatings by a low cost electrodeposition process. The idea is to impart high hardness and mechanical strength by WC particles for wear resistance; and self-lubrication property by MoS2 particles to a Co-W matrix. Firstly, unlike ELECTROLYTIC CO-DEPOSITION from suspensions of MoS2 nanoparticles, here, emphasis will be on the in-situ formation of MoS2 particles in the electrical double layer followed by their incorporation into Co-W alloys during electrolytic reduction process. Secondly, R&D efforts will be directed to co-deposit WC particles from suspensions along with MoS2 to make self-lubricated wear-resistant nanocomposite coatings. The detailed mechanistic study of MoS2 nucleation and growth; the surface and structural characterization of the nanocomposite coatings, wear and friction property and corrosion will be investigated to understand the structure property correlation. Thirdly, the electrodeposition of Co-W+WC+IF-MoS2 nanocomposite coatings will be carried out from electrolytic suspensions of WC and IF-MoS2 nanoparticles, and the properties will be compared with the former nanocomposites. A special attention will be given on the onset of an implementation of this technology into industrial practice.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2007-4-2-IIF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIF - International Incoming Fellowships (IIF)

Coordinator

KATHOLIEKE UNIVERSITEIT LEUVEN
EU contribution
€ 224 989,69
Address
OUDE MARKT 13
3000 Leuven
Belgium

See on map

Region
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0