Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Developing Novel Fire-Resistant High Performance Composites

Objective

The greater use of polymer matrix composite materials would be highly desirable. Their low weight, along with their inherent resistance to corrosion and fatigue, enables more fuel efficient and sustainable transport structures. However, for many applications, the biggest factor currently preventing the more widespread use of light high-performance polymer matrix composites is their poor fire performance. This is due to the organic matrices, which first soften on heating, causing a loss of mechanical properties and then, at higher temperatures, decompose. Decomposition results in the production of smoke and toxic or flammable decomposition products. These products are not only hazardous in terms of lack of visibility and toxicity; they can also burn, releasing heat, which can lead to flame spread and exacerbate the fire. Furthermore, loaded composite structures often collapse in a fire within a period of minutes, depending on the magnitude of the load and heat flux. The overall aim of the project is to develop novel, cost-effective, high-performance, lightweight polymer matrix composites with a step-change improvement in fire behaviour. FIRE-RESIST will achieve this by carefully targeted research in five key areas: 1. Micro-layered structural materials that are designed to delaminate extensively when exposed to heat, thereby generating a multiplicity of internal interfaces that provide a fire barrier of exceptionally low thermal conductivity. 2. Hybrid thermoset composites that are polymeric at normal temperature, but which decompose under fire to provide highly protective ceramic char phases. 3. High char polymer matrix composites derived from sustainable, naturally-sourced materials. 4. The commingling of particle-doped polymer fibres and conventional fibre reinforcements for the highly efficient dispersion of fire retarding particles within a composite. 5. Advanced multi-scale simulation of loaded polymer matrix composite structures in fire.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-NMP-2009-LARGE-3
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-IP - Large-scale integrating project

Coordinator

UNIVERSITY OF NEWCASTLE UPON TYNE
EU contribution
€ 843 200,00
Address
KINGS GATE
NE1 7RU Newcastle Upon Tyne
United Kingdom

See on map

Region
North East (England) Northumberland and Tyne and Wear Tyneside
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (18)

My booklet 0 0