Objective
Nanotechnology involves the creation and utilization of materials and devices on the nanometer scale. In our days, biosensors are among the most promising nanotechnological achievements. They have emerged as reliable analytical tools in biomedicine, biolog y and environmental control. Recent developments of fabrication processes in the nanometer range by template based synthesis and deposition techniques have supplied new impetus to the concept of biosensor membranes. Methods for the production of individual parts with such small dimensions are quite readily available, but the controlled and efficient assembly of these parts into structures of higher order still remains a challenge. Besides, the production of a highly effective biosensor membrane requires not only miniaturization of the desired nanostructures into greater hierarchy, but also extreme care in the selection of correct functional groups and their optimum density.Based on the template synthesis technique, two different strategies to prepare well-or dered arrays of poly (gamma-Benzyl-L-Glutamate), PBLG polypeptide nanotubes as basis for optical biosensor applications are proposed here. By combining synthetic chemistry, photolithography for the assembly of nanotubes, and immobilization of biomolecules of special interest, well-ordered biosensor membranes with particular electro-optical properties should be obtained. Special emphasis is placed on the ability of PBLG biosensor membrane to quantify the amount of adsorbed biomolecules through the changes of the refractive index. The challenges and the architectural design strategies of the proposed research study are highlighted in detail. Additional emphasis is put on the characterization of the arrays of polypeptide nanotubes: electro-optical, structural a nd mechanical properties will be investigated. Finally, the quality of the two proposed techniques will be compared on the basis of the results of the aforementioned characterizations.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors biosensors
- engineering and technology environmental biotechnology biosensing
- humanities arts architectural design
- natural sciences biological sciences biochemistry biomolecules
- engineering and technology nanotechnology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP6-2004-MOBILITY-5
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
MUENCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.