Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-05-28

Critical Phenomena in Random Systems

Ziel

This project aims to get a theoretical understanding of the most important large-scale phenomena in classical and quantum disordered systems. Thanks to the renormalization group approach the critical behaviour of pure systems is under very good control; however disordered systems are in many ways remarkably peculiar (think for example to non-perturbative phenomena like Griffiths singularities), often the conventional approach does not work and many crucial issues are still unclear. My work aims to fill this important hole in our understanding of disordered systems. I will concentrate my efforts on some of the most important and studied systems, i.e. spin glasses, random field ferromagnets (that are realized in nature as diluted antiferromagnets in a field), Anderson and Mott localization (with possible experimental applications to Bose-Einstein condensates and to electron glasses), surface growth in random media (KPZ and DLA models). In this project I want to pursue a new approach to these problems. I aim to compute in the most accurate way the properties of these systems using the original Wilson formulation of the renormalization group with a phase space cell analysis; this is equivalent to solving a statistical model on a hierarchical lattice (Dyson-Bleher-Sinai model). This is not an easy job. In the same conceptual frame we plan to use simultaneously very different techniques: probabilistic techniques, perturbative techniques at high orders, expansions around mean field on Bethe lattice and numerical techniques to evaluate the critical behaviour. I believe that even this restricted approach is very ambitious, but that the theoretical progresses that have been done in unveiling important features of disordered systems suggest that it will be possible to obtain solid results.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: https://op.europa.eu/de/web/eu-vocabularies/euroscivoc.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

ERC-2009-AdG
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-AG - ERC Advanced Grant

Gastgebende Einrichtung

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
EU-Beitrag
€ 2 098 800,00
Adresse
Piazzale Aldo Moro 5
00185 Roma
Italien

Auf der Karte ansehen

Region
Centro (IT) Lazio Roma
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Begünstigte (1)

Mein Booklet 0 0