Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-28

Critical Phenomena in Random Systems

Objetivo

This project aims to get a theoretical understanding of the most important large-scale phenomena in classical and quantum disordered systems. Thanks to the renormalization group approach the critical behaviour of pure systems is under very good control; however disordered systems are in many ways remarkably peculiar (think for example to non-perturbative phenomena like Griffiths singularities), often the conventional approach does not work and many crucial issues are still unclear. My work aims to fill this important hole in our understanding of disordered systems. I will concentrate my efforts on some of the most important and studied systems, i.e. spin glasses, random field ferromagnets (that are realized in nature as diluted antiferromagnets in a field), Anderson and Mott localization (with possible experimental applications to Bose-Einstein condensates and to electron glasses), surface growth in random media (KPZ and DLA models). In this project I want to pursue a new approach to these problems. I aim to compute in the most accurate way the properties of these systems using the original Wilson formulation of the renormalization group with a phase space cell analysis; this is equivalent to solving a statistical model on a hierarchical lattice (Dyson-Bleher-Sinai model). This is not an easy job. In the same conceptual frame we plan to use simultaneously very different techniques: probabilistic techniques, perturbative techniques at high orders, expansions around mean field on Bethe lattice and numerical techniques to evaluate the critical behaviour. I believe that even this restricted approach is very ambitious, but that the theoretical progresses that have been done in unveiling important features of disordered systems suggest that it will be possible to obtain solid results.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2009-AdG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-AG - ERC Advanced Grant

Institución de acogida

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Aportación de la UE
€ 2 098 800,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (1)

Mi folleto 0 0