Objective
Observations from space offer huge improvements in many fields of science. They expand widely the range of the spectral information compared to ground applications. Recently, the use of space qualified cryocoolers to decrease the temperature of instruments down to few kelvins and even below, allows the use of new resistive sensors exhibiting outstanding performances when compared to classical devices. For example, new moderately cooled magnetometers arrays can provide a very high magnetic sensitivity for space exploration, thermal X-ray detectors can reach a spectral resolution two orders of magnitude better than Silicon ones, and in the Infrared domain, observations with bolometers will soon be limited only by the photon background of zodiacal light.
The development of large format array detectors in these three fields is today constrained by the amount of signal channels that can be extracted in parallel from the power limited cold stages.
The goal of this network is to provide the community with cryogenic electronic elements performing all the essential functions to preserve the signal quality of a large amount of sensors (pixels). For this purpose, two ways must be followed in parallel:
-the development of new components (transistors) showing low noise and reduced power consumption to replace the JFETs limited to 120 K
-the conception of new circuits based on the cryogenic proven CMOS and SiGe technologies to realize complex functions (amplification, filtering, multiplexing and digitalization…)
The network gathers fundamental solid-state research laboratories for the development of elementary electronic components; a semi-industrial company already manufacturing complex CMOS and SiGe circuits for cryogenic space applications (Herschel), specialists of cryogenic measurements having already the know how for (sub) Kelvin measurements, together with confirmed space instrumentalists
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences astronomy space exploration
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences chemical sciences inorganic chemistry metalloids
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-SPACE-2010-1
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
75015 PARIS 15
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.