Objective
It is estimated that mankind wastes ~20% of the 15 terawatts required annually for global power consumption as low level heat (<200 oC). This amounts to 10^20 J/yr, which is greater than the total annual energy usage of all EU member states. Widespread availability of new low-cost organic thermoelectric devices would allow direct heat-to-electrical energy (H2E) from this vast, essentially untapped, resource generating a new industrial sector based on local power generation from otherwise wasted energy sources (engines, boilers, heat pumps, etc.) amounting up to 50 billion €/yr. New materials and devices are needed to achieve such disruptive technology as present approaches are not viable for reasons either of: (i) device inefficiency, and/or (ii) global raw material unavailability preventing widespread implementation. The development of efficient, thermoelectric modules using only low-cost, readily available, renewable and sustainable organic materials would address a range of major transnational FET challenges impacting on energy efficiency, climate change, resources depletion and ‘personalised electricity generation/use’ that will arise within the next decade. To achieve this goal the H2ESOT project is pluri-disciplinary and cross-thematic project from leading European groups able to: prepare, purify, fabricate, test and theoretically define/evolve the organic materials that are needed to fulfil this ‘Innovation Europe 2020’ vision. Europe must reach a position where it can begin to make use of a significant fraction of its waste heat in order to overcome the immense societal changes associated with sustainable growth and mitigating climate change. Only organic thermoelectric devices ultimately offer the potential for Thermoelectronic (TE) FET that can be widely deployed to recover low level heat. Only H2ESOT has the optimal blend of expertise to develop an appropriate roadmap to such revolutionary new TE materials defining a critically important new industry.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering power engineering electric power generation
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-ENERGY-2012-1-2STAGE
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
NG7 2RD Nottingham
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.