Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

Aerodynamic shape optimization for minimum transient growth in compressible flow

Objective

Industrial, economical and environmental interests are at stake in the research efforts concerning the optimisation of the shape of aircraft wings so to obtain low aerodynamic drag. For a computational method to be reliable as a design process, it must be based on a mathematical model, which provides an appropriate representation of the significant features of the flow, such as shock waves, boundary layers and laminar-to-turbulent transition. The total drag of an aircraft wing is mainly given by the sum of pressure or wave drag, related to the existence of shock waves, and viscous drag, whose magnitude depends on whether the flow on the wing is laminar or turbulent. Turbulent flow produces a much larger drag; thus important research efforts have been devoted to keeping the flow laminar over the largest possible portion of the wing surface, which when accomplished, translates directly to less pollution and reduced expenses. Two main objectives characterize this project. The first is to increase the fundamental understanding of spatial transient growth as a scenario for laminar/turbulent transition. Within the scope of this objective, the existing theory will be extended to account for three-dimensional, compressible, boundary-layer flow on either flat plates (in the fundamental studies) or curved surfaces (for the case of realistic applications). The second objective is to incorporate the newly developed model of spatial transient growth as a transition prediction method in shape optimisation in order to enable the design of slender bodies with low drag. Here, gradient based optimisation will be used and the gradients will be efficiently evaluated, despite the large number of degrees of freedom, using the adjoin of the governing equations. The efficiency is in particular important when aiming for industrial applications and increased European competitiveness.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2002-MOBILITY-5
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

EIF - Marie Curie actions-Intra-European Fellowships

Coordinator

UNIVERSITA DEGLI STUDI DI SALERNO
EU contribution
No data
Address
Via Ponte Don Melillo 1
FISCIANO
Italy

See on map

Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0