Objective
Organic photovoltaics (OPVs) have gained a lot of attention as versatile and cheap alternatives to their inorganic counterparts. Great improvement has been made by tuning the electronic properties of donor, D, and acceptor, A, molecules. Equally important for high efficiency devices, is the morphology and orientation of D and A molecules in the active layer because: (1) excitons created upon absorption have a finite migration length (5-20 nm), D and A domains therefore have to be small and (2) both domains have to fully percolate the active layer in order to achieve efficient charge transport and collection at the electrodes. So far, the D-A morphology has mainly been optimized by altering processing methods, such as spin-casting, (organic) vapor phase deposition and vacuum thermal evaporation, and by post-deposition annealing (e.g. using solvent vapor and / or temperature).
Here we propose to encode the morphology directly into the chemical structure of the D and A molecules by using self-assembly. This way, molecular recognition between the molecules determines the morphology of the active layer. To this end, pyrene derivatives with enhanced π-π stacking have been reported, as well as molecules incorporating hydrogen-bonding motifs coupled to electronically active segments. These types of self-assembled devices had enhanced efficiency compared to their non-assembled analogues, and clearly show that self-assembly provides a new level of control over morphology.
In this project, we will use self-assembling D molecules bearing large π-π stacking motifs together with hydrogen bonding arrays to hierarchically organize both D and A molecules and creating a high interfacial area, while maintaining percolation. This way exciton diffusion and splitting will be facilitated, hole mobility will be enhanced by improved interconnection of D molecules and recombination will decrease, leading to higher power conversion efficiency.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology environmental engineering energy and fuels renewable energy solar energy photovoltaic
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2013-IEF
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
67081 Strasbourg
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.