Objective
The ability to perceive and understand the state of the surrounding environment and the own state is critical for next generation robotic systems. To that aim, the human brain is still far beyond current artificial systems performance due to its capability of processing huge amounts of heterogeneous sensorial data. Interestingly, the cerebellum has been shown to play a crucial role in the generation of dexterous movements as evidenced from cerebellar ataxic patients. Behavioural studies suggest that the cerebellum actively improves sensorial discrimination and proprioception thanks to the prediction of the sensorial consequences of actions. In the last decade, several forms of long-term synaptic plasticity have been observed within the cerebellum, suggesting that distributed plasticity could support the predictive action. However the way in which those mechanisms cooperate in order to improve the function of the whole cerebellar network is not completely understood. In this project, the candidate will develop a novel theory of sensorial information representation and processing based on the cerebellar architecture. The proposed model will make use of long-term synaptic plasticity mechanisms distributed along connections existing in the cerebellar input layer (granular layer) to iteratively create sparse representations of the information, allowing fast and effective learning in successive layers. The predictions extracted from this model will be useful to design new experimental protocols to unveil the cerebellar role in acting and sensing.
By providing multiple relevant contributions across the spectrum of the H2020 objectives in terms of its potential to advance robotic manufacturing, brain processing understanding, and novel computing paradigms, this project will enable the candidate to enhance his position at the forefront of advances in this field.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences software software applications system software operating systems
- natural sciences mathematics pure mathematics discrete mathematics mathematical logic
- natural sciences computer and information sciences artificial intelligence machine learning deep learning
- natural sciences biological sciences neurobiology computational neuroscience
- natural sciences computer and information sciences data science data processing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
18071 GRANADA
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.