Objective
In the last 7 decades, leaps have been made in astrophysics in their ability to open new windows onto our universe. With every new window, came exciting new detections of the already known and as well as the unknown. We are now once more on the cusp of activating a new probing tool for revealing the secrets of our universe – gravitational wave astronomy.
Gravitational waves (GWs) are ripples in space-time that are predicted by Einstein’s theory of relativity. They are unique in the fact that they are the only type of radiation that can be emitted by black holes; allowing their direct detection. GW astronomy also brings with it the exciting opportunity for tests of general relativity as well as other gravitational theories.
Black hole binaries (BHBs) make up a large number of systems that will be detectable by both ground and space based detectors. Detection, however, requires the accurate modelling of their waveforms, which in turn requires solving the two-body problem in General Relativity. The two-body problem in general relativity is a longstanding open problem going back to work by Einstein himself. With these advances in GW detector technology, this age-old problem has been given a new lease of life and is motivating numerical, analytical and experimental relativists to work together with the prospect of opening up this new window onto our universe.
This research will investigate the 3 current methods used to model BHBs, post-Newtonian (PN), Gravitational Self-Force (GSF) and Numerical Relativity (NR). The inital phase will involve the expansion of PN and GSF, under the supervision of world-leading experts. In the return phase, this newly gained knowledge will be combined with that of the hosts experts in NR and GSF to produce a cohesive outlook of BHB modelling, both extending and highlighting the benefits and applications of the 3 methods. This will extend and further cement the possibility and far-reaching consequences of detecting GWs.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences relativistic mechanics
- natural sciences physical sciences astronomy observational astronomy gravitational waves
- natural sciences physical sciences astronomy stellar astronomy neutron stars
- natural sciences physical sciences astronomy astrophysics black holes
- natural sciences physical sciences theoretical physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-GF - Global Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
4 Dublin
Ireland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.