Project description
A better understanding of ecological and social-ecological systems
Biodiversity loss poses a significant environmental threat, as we witness the disappearance of numerous species. We’re facing an environmental crisis of unprecedented proportions. The European Research Council-funded BIOSTASES project aims to tackle this problem by developing a new body of theory on the stability of ecosystems and social-ecological systems. It focuses on four key objectives: proposing a new mathematical framework that utilises temporal variability as a measure of stability, building early warning signals for critical transitions, exploring diversity-stability relationships across scales, and studying the stability of complex meta-ecosystems. By accomplishing these goals, BIOSTASES will provide new perspectives and bridge the gap between theoretical and empirical ecology, contributing to the development of new approaches in biodiversity conservation and sustainable development.
Objective
Biodiversity loss is one of the greatest environmental challenges of our time. There is mounting evidence that biodiversity increases the stability of ecosystem functions and services, suggesting that it may be critical to the sustainability of ecosystems and human societies in the face of environmental changes. Classical ecological theory, however, has focused on measures of stability that cannot explain and predict these stabilizing effects, especially in spatial systems.
The goal of BIOSTASES is to develop a coherent body of new theory on the stability of ecosystems and coupled social–ecological systems and its relationships with biodiversity at multiple spatial scales that can better inform empirical research. BIOSTASES will reach this goal through four complementary objectives. First, it will propose a mathematical framework focused on temporal variability as an empirically relevant measure of stability, and use this framework to build robust early warning signals for critical transitions. Second, it will use dynamical metacommunity models to explore a wide range of novel questions related to ecosystem stability and diversity–stability relationships across scales. Third, it will study the stability of complex meta-ecosystems to provide new perspectives on the stability of food webs and on synergies and trade-offs between multiple ecosystem services across space. Fourth, it will develop novel theory to study the long-term dynamics and sustainability of coupled social–ecological systems.
BIOSTASES proposes an ambitious innovative research programme that will provide new perspectives on the stability and sustainability of ecological and coupled social–ecological systems in the face of environmental changes. It will contribute to bridging the gaps between theoretical and empirical ecology and between ecology and social sciences, and to developing new approaches in biodiversity conservation, landscape management, and sustainable development.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biodiversity conservation
- natural sciences biological sciences ecology ecosystems
- social sciences
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.