Objective
THE GOAL
We will derive new and fundamental insight in the relation between nano-scale structure and the performance of 3rd generation solar cells, and determine how to apply this in large-scale processing.
THE CHALLENGES
We currently have a superficial understanding of the correlations between structure and performance of photovoltaic heterojunctions, based on studies of small-scale devices and model systems with characterization techniques that indirectly probe their internal structure. The real structures of optimized devices have never been “seen”, and in devices manufactured by large-scale processing, almost nothing is known about the formation of structures and interfaces.
THE SCIENCE
We will take a ground-breaking new approach by combining imaging techniques where state of the art is moving in time spans on the order of months, with ultrafast scattering experiments and modelling. The techniques include high resolution X-ray phase contrast and X-ray dark-field tomography, in situ small and wide angle X-ray scattering, resonant scattering and imaging and time resolved studies of charge transport and transfer. To relate our findings to device performance, we will establish full 3D models of charge generation and transport in nano-structured solar cells.
THE FOCUS
Solution cast solar cells is the only technology that promises fast and cheap industrial scaling, and it is consequently the focus of our efforts. They require a tight control of processing conditions to ensure that the proper nano-structure is formed in the photoactive layers, with optimal contacts to charge transport layers and interfaces. The prime contenders are non-toxic polymer and kesterite solar cells.
THE IMPACT
Our results may advance 3rd generation, solution-cast solar cells to meet the “unification challenge” where high efficiency, stability and cheap processing combines in a single technology, scalable to the level of gigawatts per day, thus becoming a centrepiece in global energy supply.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels renewable energy solar energy
- natural sciences computer and information sciences internet transport layer
- natural sciences chemical sciences polymer sciences
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-CoG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2800 KONGENS LYNGBY
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.