Objective
The overall objective of WADI project is to contribute to the reduction of losses in water transmission systems and decrease the related energy consumption required for the process.
WADI aims to develop an airborne water leak detection surveillance service to provide water utilities with adequate information on leaks in water infrastructure outside urban areas, thus enabling the utility to promptly repair them.
The project idea relies on innovative concept of coupling optical remote sensing and their application on two complementary aerial platforms, i.e. manned and unmanned, typically used for distinctive purposes in infrastructure performance observation. The former is being used in long-distance monitoring whereas the latter in ‘particular’ areas observation, i.e. those with a limited/difficult physical access or requiring closer monitoring upon earlier detection of some anomalies in aircraft missions. Following the determination of cameras’ optimized wavelengths (suitable particularly for water leaks detection), the WADI technology will be applied in an operational environment represented by two pilot sites, i.e. in France (Provence region, case of water supply mains) and Portugal (Alqueva, case of multi-purpose mains serving irrigation, water supply, and hydro power).
The WADI proposal addresses the challenge of building a water (and energy) efficient and climate change resilient society by integrating the concept of ecosystem services through the recovery of up to 50% of the water lost at a cost which is lower by an order of magnitude than the cost of terrestrial techniques – e.g. 50-200 EUR/km for airborne technology vs. 1,000-5,000 EUR/km for ground techniques.
The project includes legal aspects assessment (related to data protection and regulatory standards for use of UAV), market analysis and strategy along with the corresponding business plan and a dissemination plan that addresses key stakeholders.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology civil engineering water engineering irrigation
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- engineering and technology environmental engineering remote sensing
- engineering and technology civil engineering structural engineering hydraulic engineering
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.5. - SOCIETAL CHALLENGES - Climate action, Environment, Resource Efficiency and Raw Materials
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.5.4. - Enabling the transition towards a green economy and society through eco-innovation
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
IA - Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-WATER-2014-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1190 Bruxelles / Brussel
Belgium
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.