Objective
The fifth generation and beyond radio systems targets 1000 times traffic volumes compared to present state-of-the-art. In order to guarantee the quality of service, communication capacity leap of three orders of magnitude requires sophisticated interference management and communication channel protection from the interference generated by other users. The objective of this project is to develop integrated transceiver hardware structures for massive MIMO/beam forming antenna arrays, supporting agile carrier aggregation, digitally assisted interference management, and full duplex communication, thus enhancing communication efficiency in spatial, temporal and frequency domains.
The evolution of communications systems inherently relies on integrated microelectronic circuits. In circuits developed in this project, we will fully exploit the digital-driven process evolution by utilizing digitally intensive time/phase domain signal processing as much as possible to minimize the effect of existing discrepancy between digital-driven process scaling and analog circuit design. The developed structures will take advantage of time/phase domain signal processing, taking full advantage of CMOS process evolution and inherently supporting beam forming antenna array structures.
We will demonstrate the effectiveness of design methods by implementing transceiver hardware structures for massive transceiver arrays. Digitally reconfigurable transceiver arrays will enable spatial multiplexing, agile carrier aggregation and digitally assisted interference management to enhance communication efficiency in spatial, temporal and frequency domains, enabling the targeted capacity leap.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications telecommunications networks mobile network 5G
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering analogue electronics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering signal processing
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications telecommunications networks mobile network 4G
- natural sciences physical sciences electromagnetism and electronics semiconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-GF - Global Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
02150 Espoo
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.