Objective
The spin of an electron trapped in the binding potential of a phosphorous donor has recently shown some of the longest quantum coherence times in solid state and is now regarded as one of the most promising materials for quantum computing. However, current readout techniques rely on single-electron transistors for which millikelvin temperatures and nanoelectronic connections are needed.
We propose to establish a new transduction mechanism that coherently couples silicon spin qubits to optical photons at the quantum level and hence provides optical addressing at 4K temperatures. Central to our proposed quantum transducer is a nanomechanical resonator, that acts as a conduit of quantum information. We will realize sufficiently strong interactions between the resonator and both spins and photons by exploiting nanophotonic systems, which can confine light fields and mechanical motion at the nanoscale.
Our objectives are to show: (i) coupling between the spin and the mechanics by inducing spin-dependent mechanical frequency shift and read this out optically, and (ii) pulsed backaction-evading measurements of nanomechanical motion, establishing a fast single-shot qubit readout method, and allowing the creation of non-classical mechanical states through projective measurement.
Doing this we create a unique three-way hybrid quantum system: spin qubit–mechanical resonator–optical cavity. The study of this new “spin-optomechanics” system is expected to both contribute to the exploration of the size-frontiers of quantum mechanics and lead to advancements in the field of quantum computation as well as ultra-sensitive magnetometry.
The project allows the applicant to gain crucial expertise in nano-optomechanics and nanophotonics. Combined with his previous experience on spin qubits, the proposed research and the excellent scientific host environment will arm him with a unique skill set that will position him well for a future research position in Europe.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences optics cavity optomechanics
- natural sciences physical sciences quantum physics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences chemical sciences inorganic chemistry metalloids
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-RI - RI – Reintegration panel
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3526 KV Utrecht
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.