Objective
The detection of primordial gravity waves created during the Big Bang ranks among the greatest potential intellectual achievements in modern science. During the last few decades, the instrumental progress necessary to achieve this has been nothing short of breath taking. However, from the latest ultra-sensitive experiments such as BICEP2 and Planck, it is clear that instrumental sensitivity alone will not be sufficient to make a robust detection of gravitational waves. Contamination in the form of astrophysical radiation from the Milky Way, for instance thermal dust and synchrotron radiation, obscures the cosmological signal by orders of magnitude. Even more critically are second-order interactions between this radiation and the instrument characterization itself that lead to a highly non-linear and complicated problem.
We propose a ground-breaking solution to this problem that allows for joint estimation of cosmological parameters, astrophysical components, and instrument specifications. The engine of this method is called Gibbs sampling, which we have already applied extremely successfully to basic CMB component separation. The new and critical step is to apply this method to raw time-ordered observations observed directly by the instrument, as opposed to pre-processed frequency maps. While representing a ~100-fold increase in input data volume, this step is unavoidable in order to break through the current foreground-induced systematics floor. We will apply this method to the Planck LFI observations, and deliver a new set of legacy Planck LFI maps that are robust with respect to instrumental systematics and astrophysical foregrounds. We will also combine these data with similar observations from WMAP (23-94 GHz) and C-BASS (5 GHz), to produce the world’s best measurements of polarized synchrotron emission at CMB frequencies. These data products and mehods will play a central role in designing and optimizing future inflationary gravitational wave experiments.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences astronomy observational astronomy gravitational waves
- natural sciences physical sciences astronomy physical cosmology big bang
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.6. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Space
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.1.6.3. - Enabling exploitation of space data
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-COMPET-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
0313 Oslo
Norway
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.