Project description
New research could reveal the mechanics of morphogenesis
Morphogenesis is one of the most remarkable examples of biological self-organisation. The principles governing morphogenesis, which involve an intricate interplay between biophysical processes and biochemical reactions, are still poorly understood. The EU-funded HydraMechanics project is focussing on the mechanical aspects of morphogenesis. Using hydra, a small multicellular fresh-water animal, as a model system, the project aims to uncover how mechanical forces and feedback contribute to the formation and stabilisation of the animal’s body plan. Hydra has a simple body plan with uniaxial symmetry and has remarkable regenerative properties. Overall, the project's work could reveal how mechanics affects animal morphogenesis and inspire new approaches on how to use external forces to direct tissue engineering. Results could also have far-reaching implications for regenerative medicine.
Objective
Morphogenesis is one of the most remarkable examples of biological pattern formation. Despite substantial progress in the field, we still do not understand the organizational principles responsible for the robust convergence of the morphogenesis process, across scales, to form viable organisms under variable conditions. We focus here on the less-studied mechanical aspects of this problem, and aim to uncover how mechanical forces and feedback contribute to the formation and stabilization of the body plan. Regenerating Hydra offer a powerful platform to explore this direction, thanks to their simple body plan, extraordinary regeneration capabilities, and the accessibility and flexibility of their tissues. We propose to follow the regeneration of excised tissue segments, which inherit an aligned supra-cellular cytoskeletal organization from the parent Hydra, as well as cell aggregates, which lack any prior organization. We will employ advanced microscopy techniques and develop elaborate image analysis tools to track cytoskeletal organization and collective cell migration and correlate them with global tissue morphology, from the onset of regeneration all the way to the formation of complete animals. Furthermore, to directly probe the influence of mechanics on Hydra morphogenesis, we propose to apply various mechanical perturbations, and intervene with the axis formation process using external forces and mechanical constraints. Overall, the proposed work seeks to develop an effective phenomenological description of morphogenesis during Hydra regeneration, at the level of cells and tissues, and reveal the mechanical basis of this process. More generally, our research will shed light on the role of mechanics in animal morphogenesis, and inspire new approaches for using external forces to direct tissue engineering and advance regenerative medicine.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
32000 Haifa
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.