Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Technology and hardware for neuromorphic computing

Project description

New ways to integrate emerging memories to enable neuromorphic computing systems

Artificial intelligence (AI) and machine learning are used today for computing all kinds of data, making predictions and solving problems. These are processes based increasingly on deep neuronal network (DNN) models. As the volume of produced data slow down machines and consume greater amounts of energy, there is a new generation of neural units. The spiking neural networks (SNNs) incorporate biologically-feasible spiking neurons with their temporal dynamics. The EU-funded TEMPO project will leverage emerging memory technology to design new innovative technological solutions that make data integration simpler and easier via new neuronal DNN and SNN computing engines. Reduced core computational operational systems’ neuromorphic algorithms will serve as demonstrators.

Objective

Massive adoption of computing in all aspects of human activity has led to unprecedented growth in the amount of data generated. Machine learning has been employed to classify and infer patterns from this abundance of raw data, at various levels of abstraction. Among the algorithms used, brain-inspired, or “neuromorphic”, computation provides a wide range of classification and/or prediction tools. Additionally, certain implementations come about with a significant promise of energy efficiency: highly optimized Deep Neural Network (DNN) engines, ranging up to the efficiency promise of exploratory Spiking Neural Networks (SNN). Given the slowdown of silicon-only scaling, it is important to extend the roadmap of neuromorphic implementations by leveraging fitting technology innovations. Along these lines, the current project aims to sweep technology options, covering emerging memories and 3D integration, and attempt to pair them with contemporary (DNN) and exploratory (SNN) neuromorphic computing paradigms. The process- and design-compatibility of each technology option will be assessed with respect to established integration practices. Core computational kernels of such DNN/SNN algorithms (e.g. dot-product/integrate-and-fire engines) will be reduced to practice in representative demonstrators.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-ECSEL-2018-2-RIA-two-stage

See all projects funded under this call

Coordinator

INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 907 062,50
Address
KAPELDREEF 75
3001 Leuven
Belgium

See on map

Region
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 5 448 750,00

Participants (19)

My booklet 0 0