Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Using causal discovery algorithms to boost subseasonal to seasonal forecast skill of Mediterranean rainfall

Descrizione del progetto

Algoritmi per migliorare le previsioni sulle precipitazioni

La regione mediterranea è un punto caldo per quanto concerne i cambiamenti climatici antropogenici. Per garantire una pianificazione a breve termine efficace, i responsabili decisionali attivi nei settori influenzati dalle condizioni meteorologiche dipendono da previsioni delle precipitazioni corrette su scale temporali da sub-stagionali a stagionali (S2S, sub-seasonal to seasonal). Alcune difficoltà cruciali, tuttavia, impediscono di effettuare previsioni affidabili oltre un periodo di circa 10 giorni. Il progetto CausalBoost, finanziato dall’UE, applicherà un metodo innovativo per migliorare le previsioni S2S delle precipitazioni che si verificano nella regione mediterranea. L’approccio si basa su una combinazione di innovativi algoritmi di scoperta casuale nell’ambito dell’apprendimento automatico con modelli operativi di previsione. Il progetto individuerà i fattori centrali nelle previsioni S2S delle precipitazioni che avvengono nella regione mediterranea, li valuterà in modo sistematico con i modelli di previsione e produrrà correzioni degli errori basate sui processi.

Obiettivo

The Mediterranean region (MED) is a hotspot of anthropogenic climate change and impacts are probably already felt today; recent heatwaves and persistent droughts have led to crop failures, wild fires and water shortages, causing large economic losses. Climate models robustly project further warming and drying of the region, putting it at risk of desertification. The particular vulnerability of this water-limited region to climatic changes has created an urgent need for reliable forecasts of rainfall on subseasonal to seasonal (S2S) timescales, i.e. 2 weeks up to a season ahead. This S2S time-range is particularly crucial, as the prediction lead time is long enough to implement adaptation measures, and short enough to be of immediate relevance for decision makers. However, predictions on lead-times beyond approximately 10 days fall into the so-called “weather-climate prediction gap”, with operational forecast models only providing marginal skill. The reasons for this are a range of fundamental challenges, including a limited causal understanding of the underlying sources of predictability.
The proposed research effort aims to improve S2S forecasts of MED rainfall by taking an innovative, interdisciplinary approach that combines novel causal discovery algorithms from complex system science with operational forecast models. This will overcome current limitations of conventional statistical methods to identify relevant sources of predictability and to evaluate modelled teleconnection processes. The outcomes of this project will (i) identify key S2S drivers of MED rainfall, (ii) systematically evaluate them in forecast models, (iii) derive process-based bias corrections to (iv) boost forecast skill. My strong background in both causal inference techniques and atmospheric dynamics puts me in a unique position to lead this innovative effort and to achieve real progress in reducing the “weather-climate prediction gap” for the MED region.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MSCA-IF-EF-ST - Standard EF

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-MSCA-IF-2018

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

THE UNIVERSITY OF READING
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 212 933,76
Indirizzo
WHITEKNIGHTS CAMPUS WHITEKNIGHTS HOUSE
RG6 6AH Reading
Regno Unito

Mostra sulla mappa

Regione
South East (England) Berkshire, Buckinghamshire and Oxfordshire Berkshire
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 212 933,76
Il mio fascicolo 0 0