Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

End-to-end hardware implementation of Artificial Neural Networks for Edge Computing in Autonomous Vehicles

Project description

An artificial step ahead for autonomous vehicle technology

With the recent advancement of artificial learning, many seek to utilise this technology for other fields. One of the fields that shows great potential for this is the autonomous vehicle (AV) industry. These driverless cars could provide great advantages to the transportation sector, reducing traffic, accidents, travel costs and time. Unfortunately, current deep learning tasks necessary for AVs to run efficiently and safely are too power- and processor-consuming for current models. The EU-funded Hailo-8 project aims to develop an alternative called Hailo-8 that would be less space-, power- and cost-consuming while also allowing for the advancement of AV technologies.

Objective

Autonomous Vehicles (AVs) present a great opportunity for the transport sector to reduce accidents, traffic congestion, time of travel and travel costs. However, for effectiveness, AVs need to process large amounts of data collected by the vehicle sensors at the edge, which requires a very powerful processor capable of computing Deep Learning (DL) tasks. This is currently lacking in the market as evidenced by the inefficiencies in current processors in processing big data at the edge in real time. Most processors for edge computing are currently reliant on CPU and GPU architectures which are challenged by Deep Learning tasks. The processors have low computational capabilities which increases their latencies (processing times). This leads to heat dissipation problems and high power consumption. The processors are also rigged with complexities that raise development costs and the price of the processors. The processors are also not easily scalable, which makes it difficult for miniaturisation.

Hailo-Tech has developed Hailo-8, which is specifically designed to optimise Edge Computing processor capabilities to allow neural network deployment through enhancing processor computational efficiency, resulting in higher capacity within the constraints of an edge device. Hailo-8 meets the industry need of optimised edge data processing by providing a first-class ASIC micro-processor that is based on a completely new micro-architecture that can execute neural network based machine learning algorithms. Hailo-8 will provide AV owners with high computational efficiency (x1,000 compared to alternative solutions), giving an immediate response after data processing. Hailo-8 increases power efficiency by a factor of 100 and has better area and cost efficiency by a factor of 10 compared to other processors. To bring the disruptive device successfully to the market we need to further perform some technical and commercial activities which required an investment of €2.993,750 M.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

SME-2 - SME instrument phase 2

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-EIC-SMEInst-2018-2020

See all projects funded under this call

Coordinator

HAILO TECHNOLOGIES LTD
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 095 625,00
Address
94 YIGAL ALON
6789139 TEL-AVIV
Israel

See on map

SME

The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.

Yes
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 993 750,00
My booklet 0 0