Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Modelling for the search for new active materials for redox flow batteries

Project description

Energising redox flow batteries

SONAR will develop a framework for the simulation-based screening of electroactive materials for aqueous and nonaqueous organic redox flow batteries (RFBs). It will adopt a multiscale modelling paradigm, in which simulation methods at different physical scales will be further advanced and linked by combining physics- and data-based modelling. SONAR will develop a screening framework to determine levelized cost of storage, starting from the automatic generation of candidate structures for the electroactive material, then iterating through molecular-, electrochemical interface-, porous electrodes-, cell-, stack-, system- and techno-economic-level models. To increase the throughput of the screening, SONAR will exploit advanced data integration, analysis and machine-learning techniques, drawing on the growing amount of data produced during the project. Project results are expected to reduce the cost and time-to-market of redox flow batteries, thus strengthening the competitiveness of the EU battery industry.

Objective

SONAR will develop a framework for the simulation-based screening of electroactive materials for aqueous and nonaqueous organic redox flow batteries (RFBs). It will adopt a multiscale modelling paradigm, in which simulation methods at different physical scales will be further advanced and linked by combining physics- and data-based modelling. Competing energy storage technologies are only comparable when using the levelized-cost-of-storage (LCOS) as a global metric, accounting for the complex interrelations between factors like CAPEX, lifetime and performance. SONAR will thus develop a screening framework to determine LCOS, starting from the automatic generation of candidate structures for the electroactive material, then iterating through molecular-, electrochemical interface-, porous electrodes-, cell-, stack-, system- and techno-economic-level models. For the iterative traversal of the different scales, exclusion criteria like solubility, standard potentials and kinetics will be defined, and the results for individual candidates will be stored in a database for further processing. To increase the throughput of the screening, SONAR will exploit advanced data integration, analysis and machine-learning techniques, drawing on the growing amount of data produced during the project. The models will be validated e.g. by comparison with measurements of redox potentials for known chemistries, or measurement data of RFB half-cells and lab-sized test cells.
SONAR will work closely with industrial partners (incl. JenaBatteries, Volterion) to ensure the commercial viability of the results. The models will be exploited individually and in a comprehensive screening service offered by Fraunhofer SCAI, facilitating the rapid assessment of the technical and economic potential of a new technology in its earliest development stages. This will reduce the cost and time-to-market, thus strengthening the competitiveness of the EU’s battery industry in the emerging field of organic RFBs.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-LC-BAT-2019-2020

See all projects funded under this call

Coordinator

FRAUNHOFER GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 918 900,00
Address
HANSASTRASSE 27C
80686 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 918 900,00

Participants (6)

My booklet 0 0