Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Lithium-ion battery with silicon anode, nickel-rich cathode and in-cell sensor for electric vehicles

Project description

Next-generation of lithium-ion batteries to power electric vehicles

Lithium-ion batteries are the most popular power sources for future transportation. Extending the driving range and enabling fast charging are key for promoting the adoption of electric vehicles. The EU-funded SeNSE project aims to create next-generation lithium-ion batteries with a silicon-graphite composite anode and a nickel-rich NMC cathode to reach a volumetric energy density of 750 Wh/l. The new battery will also provide a battery management system couped to dynamic in-cell sensors to enable faster charging, improved sustainability and recyclability, and reduced production costs.

Objective

The SeNSE proposal aims at enabling next generation lithium-ion batteries with a silicon-graphite composite anode and a nickel-rich NMC cathode to reach 750 Wh/L. Cycling stability is the key challenge for the adoption of this cell chemistry. The objective is to reach 2000 deep cycles by (i) reducing the surface reactivity of the active materials by a combination of novel film-forming electrolyte additives and active materials coatings, (ii) compensating irreversible lithium losses during the first cycles employing pre-lithiated silicon and providing an on-demand reservoir of excess lithium in the cathode, (iii) identifying and controlling critical cycling parameters with data provided from in-cell sensors. Adaptive fast charging protocols will be integrated into the battery management system based on dynamic in-cell sensor data and by implementing thermal management concepts on materials and electrode level. To improve the sustainability of the battery and to lower production cost, the content of the critical raw materials cobalt and natural graphite will be reduced. Enabled by protective coatings, aqueous slurry processing will be developed for the cathode. Costs will be further lowered and energy density improved by the development of thinner textured current collector foils offering enhanced adhesion. The feasibility and scalability of the SeNSE battery technology with respect to the call targets will be demonstrated through 25 Ah pouch cell prototypes and a 1 kWh module. Scalability to the gigawatt scale and cost-effectiveness of the proposed solutions, including aspects of recycling and second-life use, will be continuously monitored via regular briefings led by Northvolt, which currently undertakes one of the most ambitious efforts to establish a European cell manufacturing plant at scale. To strengthen the European IP portfolio in the battery field, patent applications are the preferred way of dissemination of technology developed within SeNSE.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-LC-BAT-2019-2020

See all projects funded under this call

Coordinator

EIDGENOSSISCHE MATERIALPRUFUNGS- UND FORSCHUNGSANSTALT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 097 935,21
Address
UEBERLANDSTRASSE 129
8600 Dubendorf
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 097 935,21

Participants (11)

My booklet 0 0