Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Biophysics in gene regulation - A genome wide approach

Project description

Biophysical insight into cell size sensing in cell division

Progression into cell cycle is controlled by various biochemical switches as well as by size. However, the precise mechanism by which cells sense size to initiate replication remains poorly understood. The EU-funded BIGGER project will study the intracellular biophysics in single-molecule detail in thousands of genetically different bacterial strains to provide mechanistic and structural insight into the bacterial cell cycle. Scientists will follow the dynamic 3D conformation of chromatin and the replication forks during the life cycle of Escherichia coli. The project's results will help clarify the role of individual gene products in replication initiation and cell division.

Objective

In this project, we will develop and use technology that combines synthetic genomics and live-cell imaging. These methods make it possible to study the intracellular biophysics at single-molecule detail in thousands of genetically different bacterial strains in parallel. Our approach is based on in situ genotyping of a barcoded strain library after phenotyping has been performed by live-cell imaging. Within the scope of the proposed project, the new technology will be used to solve mechanistic and structural questions of the bacterial cell cycle.

To this end, we will explore two parallel but complementary applications. In the first application, we will determine the dynamic 3D structure of the E. coli chromosome at 1kb resolution throughout the cell cycle. The structure determination can be seen as a live-cell version of chromatin conformation capture, where we will follow the 3D distances of 10 000 pairs of chromosomal loci over the cell cycle at high resolution. In the second application, we will make a complete CRISPRi knockdown strain library where we can follow the replication forks of the E. coli chromosome and septum formation over the cell cycle in individual cells. Using this strategy, we will resolve how individual gene products contribute to the cell-to-cell accuracy in replication initiation and cell division. In particular, this approach allows us to address the challenging question of size sensing at replication initiation. How the cell can decide that it is large enough to initiate replication is still an open question despite decades of investigations.

The general principles for high-end imaging of pool-synthesized cell libraries have nearly unlimited applications throughout cell biology. The specific applications explored in this project will take the understanding of the bacterial cell cycle to a new level and answer general questions about the chromosomal organization and cell size sensing.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2019-ADG

See all projects funded under this call

Host institution

UPPSALA UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 411 410,00
Address
VON KRAEMERS ALLE 4
751 05 Uppsala
Sweden

See on map

Region
Östra Sverige Östra Mellansverige Uppsala län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 441 410,00

Beneficiaries (1)

My booklet 0 0