Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

MHD Enhanced Entry System for Space Transportation

Project description

A superconducting magnet could help shield the next generation of spacecraft

When spacecraft enter the atmosphere of another planet or re-enter the earth's atmosphere, they are travelling at tremendous speeds. This heats the air around the spacecraft to temperatures so high that chemical bonds of gases in the air are broken, producing plasma, a gas of electrically charged particles, that surrounds the spacecraft. Heat shields are thus critical to the protection of people and equipment. Conventional heat shields rely on ablation, or the heating of materials covering the aircraft which carry away heat with them as they come off. The idea of using superconducting magnets to alter the flow of the high-temperature ionised gas produced on re-entry has been around for a couple of decades but has so far remained the stuff of science fiction. The EU-funded MEESST project is on a mission to make it a reality, with active magnetic shielding for atmospheric entry supported by state-of-the-art simulations that open the door to terrestrial and other space applications as well.

Objective

(Re-)entry into planetary atmospheres represents one of the most critical phases of space missions, involving high thermal loads on the vehicle surface and radio communication blackout which can last for minutes. As demonstrated with previous scientific studies, magneto-hydrodynamics (MHD) provides a framework for tackling both issues: high enough electromagnetic (EM) fields can be used to reduce heat fluxes and create a magnetic windowing able to mitigate the blackout. However, the translation of those ideas into an operational radically-new science-enabled technology to be used onboard spacecrafts has not been achieved yet. MEESST aims at filling the gap between science and technology towards the development of a first demonstrator implementing active magnetic shielding. To this end, a disruptive device consisting of a compact cryostat integrating a superconductive magnet able to generate sufficiently strong magnetic fields will be designed, manufactured, tested in on-ground experimental plasma facilities and via numerical simulations relying upon improved models. The latter will take into account, for the first time, all relevant EM-plasma interactions, thermochemical nonequilibrium and radiation effects for both Earth and Mars atmospheres. As a result, a radically-new science-enabled proof-of-concept technology will be developed and deployed, together with enhanced experimental techniques and modelling tools which can contribute to push European space technology one step ahead the competition, worldwide. The success of MEESST can introduce a paradigm shift in aerospace science and technology by turning active magnetic shielding (i.e. a futuristic concept traditionally associated to science fiction) into reality and potentially into the spotlight, not just for space travel but also for future hypersonic transportation systems, radar imaging, surveillance and GPS navigation, all requiring accurate knowledge of EM signal propagation characteristics through plasmas.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-FETOPEN-2018-2020

See all projects funded under this call

Coordinator

KATHOLIEKE UNIVERSITEIT LEUVEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 586 450,00
Address
OUDE MARKT 13
3000 Leuven
Belgium

See on map

Region
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 586 450,00

Participants (9)

My booklet 0 0