Project description
A matchmaker’s delight strengthens the field of superconducting optoelectronics
Semiconductors, materials that literally ‘semi-conduct’ electricity, have revolutionised our lives with applications in everything from consumer electronics and solar cells to lasers. Integrating semiconductors with superconductors opens the door to limitless possibilities of device functionality and new applications including quantum processing, communication and encryption. However, fine-tuning and optimising the actual physical interface between the two types of materials has been challenging due to lack of control. With the support of the Marie Skłodowska-Curie Actions programme, the SuperCONtacts project intends to overcome these limitations with a new fabrication technique that will lead to the realisation of atomically sharp superconductor–semiconductor interfaces.
Objective
The emerging field of superconducting optoelectronics has the potential to impact future quantum processing, communication and encryption. Hybrid light-emitting diodes exhibit emission of entangled photons enhanced by the superconducting state, while novel superconductor (Su) based lasers and quantum light sources have been proposed. Despite the amount of research done in semiconductor (Se) p-n physics and superconductivity, the practical integration between these two field of research is poor mainly due to the weak control of high quality Se/Su interfaces.
This project proposes to overcome these limitations with a new fabrication technique, based on the metallic diffusion of metals in Se nanowires (NWs), for the realization of atomically sharp Su/Se interfaces with an epitaxial relationship.
Starting from a material search I will then investigate the Al (Tc~1K) diffusion into n-doped InAs NWs as well as V and Nb (all Tc>5 K) diffusion into InAs, Si, Ge and GAs NWs. The band structures and resulting contact types (Schottky or Ohmic) of the different material systems will be studied numerically and tested at cryogenic temperatures to find the best material combination. Doping of the nanowires will be tuned to demonstrate superconducting correlations in both p- and n-doped NWs, an essential step for the realization of superconducting diodes. Diffusion through in-situ (S)TEM heating experiments will allow me to control the Su/Se/Su junctions up to the ultimate limit of few nanometers. These ultra-short JJs will allow to enhance the superconducting correlations. Ballistic transport will be probed down to ultra-low temperatures (~10 mK). and the quantification of the mean free path and the quality of the interfaces will take place. By embedding these ultra-short JJs in a superconducting quantum interference device I will be able to control the intensity supercurrent as well as achieving ultimate magnetic-sensitivity ready for novel technological applications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences electromagnetism and electronics optoelectronics
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences physical sciences optics laser physics
- natural sciences physical sciences electromagnetism and electronics superconductivity
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00185 Roma
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.