Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Iwasawa theory of Galois representations

Obiettivo

"Galois representations have become one of the central objects of study in number theory and arithmetic geometry. Since Wiles' proof of the Taniyama-Shimura conjecture (hence the completion of the proof of Fermat's last theorem) using Iwasawa theoretical ideas (via Hida's and Mazur's theory of deformations of Galois representations), tremendous amount of progress have been made in the study of Galois representations. Despite the great achievements in the last decade, many important questions in this area of research remain open, such as the ""main conjectures"" of Iwasawa theory in various contexts, posed in great generality by Greenberg, for various Galois representations and for their various deformations. Once the main conjectures are proven, many interesting arithmetic data may be extracted about the Galois representation one starts off with. The main technical tool to attack the main conjectures is the machinery of Euler systems and Kolyvagin systems. This project aims for a study of Euler systems and Kolyvagin systems attached to Galois representations and attached to their Iwasawa theoretical deformations; as well as related themes within the Euler system theory. Some progress have already been made by the applicant in his thesis where he was able to prove that Kolyvagin systems attached to many Galois representations could be deformed along the ""cyclotomic direction"", namely in the most classical Iwasawa theoretical setting. Currently, he is involved with a relevant project about the construction of Kolyvagin systems for the nearly ordinary deformations of Galois representations attached to Hilbert modular forms, out of Euler systems constructed by Olivier Fouquet in his thesis. Should this project succeed, it already would be an important step further beyond the treatment of Mazur-Rubin and the applicant's thesis, where they have successfully dealt with the Kolyvagin system theory for the ""cyclotomic"" deformations, namely the simplest type."

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

FP7-PEOPLE-IRG-2008
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MC-IRG - International Re-integration Grants (IRG)

Coordinatore

KOC UNIVERSITY
Contributo UE
€ 100 000,00
Indirizzo
RUMELI FENERI YOLU SARIYER
34450 Istanbul
Turchia

Mostra sulla mappa

Regione
İstanbul İstanbul İstanbul
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0