Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Algorithms for Testing Properties of Distributions

Objectif

In a wide variety of computational settings, where the input data is most naturally viewed as coming from a distribution, it is often crucial to determine whether the underlying distribution satisfies various properties. Examples of such properties include whether two distributions are close or far in statistical distance, whether a joint distribution is independent, and whether a distribution has high entropy. For most such properties, standard statistical techniques which approximate the distribution lead to algorithms which use a number of samples that is nearly linear in the domain size. Until very recently, distributions over large domains, for which linear sample complexity can be daunting, have received surprisingly little attention. However, new interest in these questions comes from many directions, including data mining, research in the natural sciences, and networking algorithms. Recent results have shown that one can achieve results which are significantly more efficient than the standard techniques for the case of large domains. We propose a research program that will lead to an understanding of the sample, time and space complexity required to identify various natural properties of a probability distribution. We will focus on determining which properties can be understood with a number of samples that is sublinear in the domain size, and will lead to an understanding of the aspects of algorithm design that are specific to these constraints. The questions that will be considered range from considering the complexity of testing previously unstudied properties, understanding the complexity of approximating the distance to having a property, finding improved algorithms for important subclasses of distributions, investigating new models of distribution testing, and further understanding the relationship between the computational complexity and sample complexity.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-IRG-2008
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-IRG - International Re-integration Grants (IRG)

Coordinateur

TEL AVIV UNIVERSITY
Contribution de l’UE
€ 100 000,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0