Objective
Group theory is a central principle in mathematics. The set of symmetries of an arbitrary mathematical object forms a group, so groups arise virtually in all areas in mathematics (and also in certain parts of physics and chemistry). An infinite group is called residually finite, if the intersection of its subgroups of finite index is trivial. This means that finite images approximate the group structure. Important examples are finitely generated linear groups, specifically, arithmetic groups. There are various group invariants, whose asymptotic behavior on the subgroup lattice of such a group is important to understand. Besides pure group theory, questions of this type emerge naturally in algebraic topology, number theory, geometry and representation theory. Examples for these invariants include the rank, homologies and various geometric and spectral invariants of the finite quotients. Miklos Abert, the researcher of the proposal, is an expert in this area. His recent work connects seemingly far areas, like graph theory, 3-manifold theory and topological dynamics through profinite actions. His earlier work analyzes random profinite actions. He proposes to continue his research in these directions and also to engage in emerging new directions, like graph limits. Ultimately, Abert aims to build a general theory of residually finite groups acting on rooted trees. Abert currently holds a tenure track position at the University of Chicago, one of the top ranking universities in the US. He continuously receives individual NSF research grants since 2004. If funded, he intends to return to Europe and continue his research in the Renyi Institute. This would enrich the mathematical culture of Hungary, one of the new Member States to the European Union and would contribute towards reversing brain drain. The Institute has expressed its intention that the researcher joins it permanently in case the project is successfully completed.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences mathematics pure mathematics arithmetics
- natural sciences mathematics pure mathematics topology algebraic topology
- natural sciences mathematics pure mathematics geometry
- natural sciences mathematics pure mathematics discrete mathematics graph theory
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-IEF-2008
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
1053 Budapest
Hungary
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.