Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Invariants of residually finite groups: graphs, groups and dynamics

Objetivo

Group theory is a central principle in mathematics. The set of symmetries of an arbitrary mathematical object forms a group, so groups arise virtually in all areas in mathematics (and also in certain parts of physics and chemistry). An infinite group is called residually finite, if the intersection of its subgroups of finite index is trivial. This means that finite images approximate the group structure. Important examples are finitely generated linear groups, specifically, arithmetic groups. There are various group invariants, whose asymptotic behavior on the subgroup lattice of such a group is important to understand. Besides pure group theory, questions of this type emerge naturally in algebraic topology, number theory, geometry and representation theory. Examples for these invariants include the rank, homologies and various geometric and spectral invariants of the finite quotients. Miklos Abert, the researcher of the proposal, is an expert in this area. His recent work connects seemingly far areas, like graph theory, 3-manifold theory and topological dynamics through profinite actions. His earlier work analyzes random profinite actions. He proposes to continue his research in these directions and also to engage in emerging new directions, like graph limits. Ultimately, Abert aims to build a general theory of residually finite groups acting on rooted trees. Abert currently holds a tenure track position at the University of Chicago, one of the top ranking universities in the US. He continuously receives individual NSF research grants since 2004. If funded, he intends to return to Europe and continue his research in the Renyi Institute. This would enrich the mathematical culture of Hungary, one of the new Member States to the European Union and would contribute towards reversing brain drain. The Institute has expressed its intention that the researcher joins it permanently in case the project is successfully completed.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: https://op.europa.eu/es/web/eu-vocabularies/euroscivoc.

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP7-PEOPLE-IEF-2008
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MC-IEF - Intra-European Fellowships (IEF)

Coordinador

HUN-REN RENYI ALFRED MATEMATIKAI KUTATOINTEZET
Aportación de la UE
€ 154 797,22
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0