Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

PARYLENE based artificial smart LENSes fabricated using a novel solid-on-liquid deposition process

Objective

The main goal of the project PARYLENS is to develop the next generation optical devices, based on an innovative and reliable concept inspired by natural optical systems such as the human and the fly eyes. We propose the following devices to the European citizen and industry: 1) tuneable lenses 2) truly accommodative intraocular lenses 3) bistable flexible displays The development of those devices relies on recent advances in nanotechnology combined with the patented SOLID (Solid On Liquid deposition) process, which offers the possibility to grow a stable solid layer directly onto a liquid, such that the solid uniformly replicates and encapsulates the liquid template. When using the polymer Parylene as solid layer, the resulting interface is perfectly smooth and the liquid template remains unaffected, which is ideal for optical applications. Parylene is stable, biocompatible, highly transparent, and can be deposited in a one-step process also on liquids. PARYLENS proposes to develop low cost yet high quality, reliable smart devices. The actuation of the tuneable lenses will rely on Parylene-based electroactive polymers and liquid crystals. Tuneable lenses are expected to have an impact on the consumer electronics market (mobile phones, cameras, etc) in addition, the development of low actuation voltages tuneable lenses will profit to the biomedical devices market (artificial eyes, endoscopes, etc). The truly accommodative intraocular lenses will closely mimic the structure and shape of the crystalline lens of the human eye. They will also prevent inflammation and infections. The structure of microlens arrays will be used to develop flexible bistable liquid crystals displays. The consortium is well balanced (12 partners from 8 countries) and goes for full complementarity. It comprises 4 SMEs, 3 universities and 4 research centres. Together they will make this ambitious multidisciplinary project a reality.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-NMP-2009-SMALL-3
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

HAUTE ECOLE SPECIALISEE DE SUISSE OCCIDENTALE
EU contribution
€ 458 156,00
Address
Route de Moutier 14
2800 Delemont
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Espace Mittelland Jura
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (12)

My booklet 0 0