European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Propellantless deorbiting of space debris by bare electrodynamic tethers

Objetivo

"Concern about the growth of space debris, aggravated by the increase in the number of countries with direct access to space, made the SPA.2010.2.3-02 Call Topic suggest ""preventing generation of new debris and de-orbiting upper stages and spacecraft after mission completion"". The Project proposed involves Research and Technology Development of an efficient deorbit system, to be carried in the future by every launched spacecraft. A dedicated system is needed because satellites naturally orbit at ionospheric altitudes where air drag is very weak. The system considered involves magnetic drag on a current-carrying conductive tether, uses no propellant and no power supply, and generates power on board. It beats alternative systems (enhanced air drag, and rocket and electrical thrust) in simplicity and in the combined basic metrics: Frontal Area x Deorbit Time and System-to-Spacecraft Mass Ratio. Like air drag, magnetic drag is a dissipative mechanism arising from the orbital tether motion relative to the corotating magnetized plasma, which induces the current in the tether. The Work Programme includes studies of plasma-tether interaction under ambient-plasma variations along orbit, performance dependence on orbital altitude/inclination, and trade-off against alternative systems; numerical simulations of current to a bare tether; and studies of orbit/tether dynamics, and of both tether survival and the tether itself as debris. Deorbiting a satellite representative in both orbit and mass in Low Earth Orbit is considered. Tasks involve i) Design and manufacturing the tether as a tape with possible materials-structure both lengthwise and in its cross section, and a study of materials; ii) deployment strategy, and design / manufacturing of subsystems: tether-deployment mechanism, end mass, electric control and driving module, electron-ejecting plasma contactor, and interface elements; and iii) microgravity, and hypervelocity-impact and tether-current laboratory tests."

Convocatoria de propuestas

FP7-SPACE-2010-1
Consulte otros proyectos de esta convocatoria

Régimen de financiación

CP - Collaborative project (generic)

Coordinador

UNIVERSIDAD POLITECNICA DE MADRID
Aportación de la UE
€ 250 561,00
Dirección
CALLE RAMIRO DE MAEZTU 7 EDIFICIO RECTORADO
28040 Madrid
España

Ver en el mapa

Región
Comunidad de Madrid Comunidad de Madrid Madrid
Tipo de actividad
Higher or Secondary Education Establishments
Contacto administrativo
Roberto Prieto (Prof.)
Enlaces
Coste total
Sin datos

Participantes (6)