Objective
The world of atoms is governed by the rules of quantum mechanics. Over the past century, quantum-mechanical phenomena such as superposition and entanglement have been observed and studied with great precision. Today, we are entering a new era in which we can hope to explore quantum mechanics in larger objects. The science of quantum mechanics in more complex objects is barely known and as a result quantum mechanics is rarely explicitly used in technology. Theoretically, superposition and entanglement could be exploited as a new resource in a wide variety of future applications. We focus on information science and investigate the use of quantum mechanics in computing, i.e. a quantum computer (QC). If information is encoded in quantum superpositions and processed by exploiting entanglement, a QC can solve computational problems that are beyond the reach of conventional computers. Building a QC is, however, an enormous scientific challenge because the fragile quantum bits need to be protected from and corrected for even the smallest disturbances by the environment. Meeting this challenge requires a synergetic effort combining the best of quantum theory, electrical engineering, materials science, applied physics and computer science. This proposal aims to achieve a robust, exemplary QC. We propose a circuit containing processor qubits (two types: superconducting transmon qubits and spin qubits in silicon quantum dots), memory qubits (two types: topological qubits with nanowires and donor qubits), and a quantum databus (superconducting striplines). Our goal is to demonstrate a 13-qubit circuit that incorporates fault-tolerance through implementation of a surface code. We will demonstrate back-and-forth quantum state transfer between processor and memory qubits. Our team brings together the required expertise into a single “QC-lab” enabling us to bring our understanding of quantum mechanics to the next level and push QC to the tipping point from science to engineering.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences quantum physics
- natural sciences computer and information sciences
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2012-SyG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
2628 CN DELFT
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.