Objective
There are more than thirty thousand particle accelerators in the world, ranging from the linear accelerators used for cancer therapy in modern hospitals to the giant 'atom-smashers' at international particle physics laboratories used to unlock the secrets of creation. Beam diagnostics systems are essential constituents of any particle accelerator; they reveal the properties of a beam and how it behaves in a machine. Without an appropriate set of diagnostic elements, it would simply be impossible to operate any accelerator complex, let alone optimize its performance. Of particular importance are beam diagnostics methods based on light emitted by a beam of charged particles, such as synchrotron radiation, optical transition and diffraction radiation or Smith-Purcell radiation.
The main goal of DITA-IIF is to advance the state of the art of optical beam diagnostics to meet the requirements of the present and next generation of accelerators. Our aim is to develop minimally invasive methods for low to medium power accelerators and non-invasive techniques applicable to very intense, high power particle beam accelerators.
We will address four key diagnostic challenges 1) how does one extend and validate the dynamic range of current beam imaging methods to monitor and quantify beam halo, an potential source of beam loss and increased radiation levels that can disrupt beam transport and even damage accelerator components; 2) can one develop a simple, fast all optical method to map the transverse phase space of the beam that can be used to quantitatively determine how well the beam is being transported throughout the accelerator; 3) can one use near field optical diffraction radiation, a noninvasive imaging method, to measure the size and distribution of a high energy beam; 4) can one use the angular distribution of coherent diffraction radiation to measure the time duration of a single beam pulse to optimize bunch compression, a fundamental beam conditioning process.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences theoretical physics particle physics particle accelerator
- medical and health sciences clinical medicine oncology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2013-IIF
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
L69 7ZX LIVERPOOL
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.