Project description
New methodology addresses market behaviour and catastrophes
When it comes to predicting market behaviour and addressing catastrophes, traditional methods fall short. The European Research Council-funded Disasters project has proposed a groundbreaking solution. Considering that market uncertainty is driven by normal shocks or Brownian motions, the Disasters approach examines the possibility of jumps and disasters. Another concern that the project addresses is the lack of a framework for resource allocation in the face of various potential catastrophes. Disasters proposes to utilise observable asset price data and provide policymakers with a framework for alleviating associated risks. This work holds great potential for improving our understanding of disaster management.
Objective
My proposal consists of two strands linked by a common theme--namely a concern for the impact of disasters, in financial markets and more generally--and by a shared methodology.
In the first of these strands, I propose to develop ways of using observable asset price data to infer the beliefs of market participants about various quantities that are central to financial economics, including (i) the equity premium; (ii) the forward-looking autocorrelation of the market (i.e. time-series momentum); (iii) the risk premia associated with individual stocks; (iv) the correlation between stocks; and (v) measures of asymmetric risk, such as the forward-looking probability of a significant downward jump in the stock market over some prescribed time period.
This work will exploit theoretical techniques that I have developed in previous research, and that allow for the possibility of jumps and disasters in financial markets. I will therefore be able to avoid the unpalatable assumption—which is made, implicitly or explicitly, in much of the finance literature—that uncertainty is driven by conditionally Normally distributed shocks (or, in continuous time, by Brownian motions). The importance of doing so is underscored by the turmoil in financial markets over the last few years.
These techniques will also be applied in the second strand of my proposal, which focuses on issues related to catastrophes more generally, including for example climate change; highly contagious viruses on the scale of the influenza pandemic of 1918; or nuclear or bio-terrorism. This project will be joint with Professor Robert S. Pindyck of MIT. The goal is to provide a framework within which policymakers, faced with multiple different types of potential catastrophe, can determine how society’s limited resources should best be used to alleviate the associated risks.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- social sciences political sciences political transitions terrorism
- social sciences economics and business economics
- natural sciences physical sciences astronomy planetary sciences meteorites
- medical and health sciences health sciences infectious diseases RNA viruses influenza
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
WC2A 2AE London
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.