Objective
Optical laser-based technologies are a key technology of the 21st century. Extension of the range of scientific and commercial laser applications requires a constant expansion of the accessible regimes of laser operation. Concepts from nonlinear optics, driven with ultra-fast lasers provide all means to achieve this goal. However, nonlinear optics typically suffer from low efficiencies, e.g. if high-order processes are involved or if the driving laser pulse intensities must be limited below damage thresholds (e.g. in nonlinear microscopy of living cells, or nonlinear spectroscopy of com-bustion processes). Hence, we require methods to enhance nonlinear optical processes. The field of “coherent control” provides techniques to manipulate laser-matter interactions. The idea is to use appropriately designed light-matter interactions to steer quantum systems towards a desired out-come, e.g. to support nonlinear optical processes.
The goal of HICONO is to combine the concepts of coherent control with high-intensity nonlinear-optical interactions. The particular aim is to enhance the efficiency of nonlinear optical processes and extend the range of high-intensity laser applications. HICONO will develop new coherent con-trol strategies matched to high-intensity nonlinear optics. This will push high-order frequency con-version towards larger output yield, enable novel applications in high-resolution spectroscopy and microscopy, and drive novel technologies for ultra-short pulse generation and characterization. The close cooperation of HICONO with industry partners will lead to commercially relevant devices.
In terms of training, HICONO aims at the development of young researchers with appropriate skills to exploit the concepts of high-intensity laser technologies, laser-based control, and applied nonlinear optics. HICONO provides a unique, very broad and technology-oriented early-stage training program with strong exposure of the fellows to industry environment.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences quantum physics
- natural sciences physical sciences optics microscopy
- natural sciences physical sciences optics laser physics ultrafast lasers
- natural sciences physical sciences optics nonlinear optics
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-ITN-ETN - European Training Networks
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-ITN-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
64289 Darmstadt
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.