Objective
Quantum computing is now widely regarded by many in academia, governments and industry to represent a major new frontier in information technology with the potential for a disruptive impact. Many different materials and approaches have been explored, with a narrowing of focus in recent years on scalable implementations based on solid state platforms. In particular, there is now strong evidence that silicon, the primary platform technology for today’s processor technology, inherently possesses many key properties that make it advantageous for quantum computing. Two types of qubit based on spins in silicon nano-devices made in academic research labs have already been reported with demonstrated high-fidelity operation. Our project builds on this success and aims to take this technology to the next readiness level by showing that silicon-based qubits can be realised within a full CMOS platform, using the 300mm-scale fabrication facilities in our consortium. In doing so we will demonstrate the true potential of silicon based qubits in terms of scalability and manufacturability.
Our focus is on distilling the silicon device design down to the simplest core element necessary to demonstrate qubit behaviour, in order to lay the foundation for a scalable technology. We will design, model and fabricate these qubit devices, and then benchmark them using key operating parameters. Our attention is not limited at the lowest level technology layer where the qubits reside, and includes higher control layers necessary to operate such devices, including demonstrating strategies for achieving local control and readout in large-scale arrays without cross-talk and developing cryo-CMOS electronics to support the qubit operation. Both of these may be spun-out and yield their own technological impacts. Thus, our holistic approach offers a wider opportunity to harness the tremendous proven capabilities of integrated CMOS technology to become a key driver of quantum technology development.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-ICT-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75015 PARIS 15
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.