Objective
Species interactions such as mutualism, parasitism and predation underpin much of life’s diversity. We aim to understand the mechanistic role of learnt traits in the origin and maintenance of mutualistic interactions between species, and to test their evolutionary and ecological consequences. To do so, we shall study a remarkable mutualism: the foraging partnership between an African bird species, the greater honeyguide Indicator indicator, and the human honey-hunters whom it guides to bees’ nests. Honeyguides know where bees’ nests are located and like to eat beeswax; humans have the ability to subdue the bees and open the nest, thus exposing beeswax for the honeyguides and honey for the humans. This model system gives us a wonderful opportunity to study mutualisms, because local human and honeyguide populations vary strikingly in whether and how they interact, and because we can readily manipulate these interactions experimentally. We have already demonstrated that it is fully feasible to carry out observational and experimental work at a study site we have established in cooperation with a honey-hunting community in northern Mozambique. Here, and at a series of comparative field sites we have identified in south-eastern Africa, we shall ask: is learning involved in maintaining a geographical mosaic of honeyguide adaptation to local human cultures? How does reciprocal communication between humans and honeyguides mediate their interactions? What are the effects of cultural co-extinctions on each partner and their ecosystems, and how quickly can such cultures be re-ignited following their loss? In so doing we shall test for the first time the hypothesis that reciprocal learning can give rise to matching cultural traits between interacting species. Understanding the role of such phenotypic plasticity is crucial to explain how and why the outcome of species interactions varies in space and time, and to predict how they will respond to a rapidly changing world.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
This project's classification has been validated by the project's team.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN Cambridge
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.