Objective
Future aircraft will have to be more fuel efficient in order to accomplish sustainable air transport growth. One of the key enablers to achieve this fuel efficiency is drag reduction by improved aerodynamic efficiency. On its turn, a key enabler within this aerodynamic efficiency is air foil drag reduction by laminar flow control. The relevant technologies involve a hybrid joining of titanium and CFRP for the leading edge design. For a successful implementation of this concept the fracture properties (i.e. strain energy release rates) of this joint must be reliably determined experimentally to pave the way towards more precise numerical tools development for the critical design of such joints. A full experimental characterization of the mode I, II and mixed mode fracture properties of three different joining technologies under quasi-static, fatigue and high strain rate loading in ambient, hot/wet and low-temperature conditions is thus required and targeted in this project.
The objectives set and the activities envisaged in TICOAJO are summarized as follows:
• Investigate manufacturing parameters to improve properties, focus on pre-treatment of metal and composite parts
• Preselect four different joining technologies already verified in industrial level
• Manufacture coupons with optimal adhesion characteristics for four union types
• Explore joint properties by static testing for all four union types at three environmental conditions (CTD, Ambient, HTW). At high strain rate perform tests at ambient conditions,for the best union type only
• Screen for the best union-type and characterize fatigue properties at three environmental conditions (cold-dry, Ambient, hot-wet), resulting in in-depth knowledge of the damage tolerance (DT) capabilities
• Validate the coupon results and in-depth DT-knowledge by manufacture two subcomponents, using the best manufacturing technique, predict its damage tolerance capabilities, test it in realistic (ambient) loading conditions, and correlate prediction and result. Perform a static test.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology mechanical engineering manufacturing engineering
- natural sciences chemical sciences inorganic chemistry transition metals
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- engineering and technology materials engineering fibers carbon fibers
- engineering and technology environmental engineering energy and fuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.4. - SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.4.5.1. - IADP Large Passenger Aircraft
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
CS2-RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-CS2-CFP03-2016-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1059CM Amsterdam
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.