Objective
Graphene-based materials have emerged as the ideal candidates to substitute other conventional materials currently used as electrodes in energy storage devices (most of them currently based on graphite or other forms of carbon). The reason is
basically the fact that graphene, which is a recently discovered form of carbon awarded with the Nobel Prize in 2010, is the only material known that gathers together the extraordinary properties of great mechanical and tensile strength, the largest surface area described for any other material, a high chemical stability and superior thermal and electrical conductivities.
The combination of these extraordinary properties makes of graphene a unique material. However, what really makes of graphene a huge promise under a macroeconomic perspective is that graphene in essence is carbon; one of the most
abundant elements in earth. This is why graphene has attracted a huge social, economic and industrial interest over the last years and this is why some sources predict that graphene will become the responsible of the next technological revolution.
However, the current methods for production of graphene-based materials require from multistep chemical transformations, making their industrial production completely unfeasible and very expensive. Therefore, the use of these materials in real energy storage devices is prevented nowadays.
Gnanomat S.L has patented an environmental friendly, safe (no need for hazardous or toxic chemical reagents or solvent) straightforward method for the production of graphene-based materials in a single step procedure, which will make feasible their low cost industrial production. Thanks to the unique features of our technology, it has the potential to become the gold-standard method for industrial production of graphene based materials, offering a solution to overcome the critical barriers in actually exploiting the benefits of these materials in energy storage devices.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences electrochemistry electric batteries
- natural sciences physical sciences electromagnetism and electronics
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- natural sciences chemical sciences inorganic chemistry inorganic compounds
- social sciences political sciences political transitions revolutions
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.2. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.1.5. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing
See all projects funded under this programme -
H2020-EU.2.1.3. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced materials
See all projects funded under this programme -
H2020-EU.2.3.1. - Mainstreaming SME support, especially through a dedicated instrument
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
SME-2 - SME instrument phase 2
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-SMEInst-2016-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28049 MADRID
Spain
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.