Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Microrheology of two-dimensional active colloidal crystals and glasses

Objective

Self-propelling colloidal particles, originally designed to mimic living microorganims, offer exciting opportunities to engineer smart materials equipped with activity. To date, the behavior of synthetic microswimmers has been extensively studied in homogeneous environments, close to confinements and in semi-dilute suspensions. However, for materials’ design, the use of solid-like phases, such as crystals and glasses, is highly desirable. While recent numerical simulations have invested a lot of effort in understanding the structural and mechanical properties of dense colloidal materials with activity, experiments significantly lag behind. One difficulty stems, for instance, from the presence of short-range attractive forces that affect the active motion when two of more microswimmers come near contact.

In this project, we will investigate the mechanical properties of dense monolayers made partly or entirely of self-propelling colloids using microrheology. We will assemble colloidal monolayers at a flat oil/water interface, where long-ranged repulsive forces will lead to the formation of crystals and glasses with loosely-packed configurations, i.e. with particles that are far from contact. We will mix passive Brownian particles with a controlled amount of active platinum coated particles that self-propel due to a catalytic reaction with hydrogen peroxide dispersed in water. We will elucidate the intimate relation between structure, activity and mechanical properties of dense active suspensions using microrheology experiments, in which we will analyse the fluctuations of a probe driven through the active material by means of an optical tweezing. Our results will shed new light on the unexplored physics of active crystals and glasses and provide a protocol to quantify their mechanical properties. While the proposal research is primarily fundamental in nature, our findings will serve as benchmarks for the design of novel active materials and devices.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2016

See all projects funded under this call

Coordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 183 454,80
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 183 454,80
My booklet 0 0