Objective
The overall objective of “Robust OTFT sensors” is to apply Dr. Nikolka’s expertise in material science and organic electronics to the field of organic sensors. The aim of the specific project is to explore the use of state-of the art conjugated polymers as a platform for flexible, low-cost lactic acid sensors and biosensors. Dr. Nikolka will therefore spend time in Prof. Zhenan Bao’s group (Stanford University), which is world leading in the areas of electronic-human interfaces, e-skin and biological sensing technologies. In Prof. Bao’s group, he will learn the experimental techniques required for work on (bio-) sensors including microfluidics, flow-cell setups or the functionalization of surfaces. To ensure a successful project outcome, Dr. Nikolka will build on his previous work and achievements, such as the discovery of high performance, disorder free polymers (Venkateshvaran*, Nikolka* et al., Nature, 2014) or the demonstration of high operational and environmental stability of high-mobility conjugated polymer through the use of molecular additives (Nikolka et al., Nature Materials, in 2nd stage review). The project is aimed at providing Dr. Nikolka with the techniques and tools to grow as an independent researcher which he will be able to demonstrate during the return phase by combining novel sensors designs with printing techniques pioneered at Cambridge University. “Robust OTFT sensors” will furthermore enable Dr. Nikolka to profit from training and educational programs and allow him to gain essential skills in project management, leadership and financial independency. Finally, it is the goal of the project to create a strong international collaboration between the outgoing and return host laboratories and connect expertise in sensing (Stanford) with the expertise in printed organic semiconductors (Cambridge). This work could lead towards various low-cost sensors for biomedical or lab-on-a-chip applications having a direct and profound impact on society.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors biosensors
- engineering and technology environmental biotechnology biosensing
- natural sciences chemical sciences organic chemistry organic acids
- engineering and technology other engineering and technologies microtechnology lab on a chip
- medical and health sciences health sciences personalized medicine
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-GF - Global Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN Cambridge
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.