Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

The Double Edged Role of Nitric Oxide and Hydrogen Peroxide in a Coral Symbiosis

Objective

Global climate changes affect coral reefs worldwide and these valuable marine biodiversity hotspots are increasingly experiencing a symbiotic dysfunction known as coral bleaching, where the global bleaching events in 2016 are the most significant to date. The underlying physiological mechanisms inducing the bleaching response remain unclear. It is known that cellular oxidative stress and reactive species such as nitric oxide (NO) and hydrogen peroxide (H2O2) are involved, but the sources and sinks of these compounds, their interplay and spatio-temporal dynamics have not been investigated in corals, partly due to lack of suitable experimental tools.
The DENOCS projects will apply a suite of novel quantitative assessment techniques to investigate the dynamics and impact sites of NO and H2O2 in intact corals, coral tissue culture, and isolated photosymbionts when subjected to experimental treatments mimicking global change-induced environmental stress scenarios. This will encompass expert training of Dr. Schrameyer in the use of novel microsensors for NO and H2O2 in combination with advanced bioimaging of the oxidative and nitrosative stress response in corals, variable chlorophyll fluorescence imaging and cellular 14C-fixation assays to assess symbiont photosynthesis. Prospective outcomes of DENOCS include a better understanding of oxidative and nitrosative stress responses in corals, quantification of threshold concentrations and impact sites of reactive oxygen and nitrogen species, and how these are involved in the coral bleaching response. The project DENOCS will promote EU’s research and innovation excellence through its interdisciplinary measurement approach and international collaboration, and will enable the restart of a promising career of Dr. Schrameyer after a maternity break.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-CAR - CAR – Career Restart panel

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2016

See all projects funded under this call

Coordinator

KOBENHAVNS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 212 194,80
Address
NORREGADE 10
1165 KOBENHAVN
Denmark

See on map

Region
Danmark Hovedstaden Byen København
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 212 194,80
My booklet 0 0