Objective
The CO2EXIDE project aims at the development of a combined electrochemical-chemical technology for the simultaneous “200%” conversion of CO2 to ethylene at the cathode, water oxidation to hydrogen peroxide at the anode and a subsequent chemical conversion of both intermediates to ethylene oxide and oligo-/polyethylene glycol in a cascade, boosting this technology from TRL4 to TRL6. The CO2EXIDE technology combines a modular nature for the feasibility of a decentralised application, a high energy and material efficieny/yield and the substitution of fossil based production of ethylene oxide. The CO2EXIDE technology will be combinable with renewables and allows for the direct creation of products, which can be integrated into the existing supply chain. The reactions will be operated at low temperatures and pressures and forecast significant improvements in energy and resource efficiency combined with an enormous reduction of GHG emissions. All improvements will be quantitated using Life Cycle Assessment.
The CO2EXIDE approach will bring together physicists, chemists, engineers and dissemination and exploitation experts from 5 universities/research institutions, 3 SMEs and 2 industries, innovatively joining their key technologies to develop and exploit an unprecedented process based on CO2, renewable energy and water to combine the chemical and energy sector.
Within 42 months project duration, the CO2EXIDE technology will undergo a thorough material and component R&D programme. A 1kW PEM electrolyser for CO2-reduction and water oxidation in combination with an ethylene enrichment unit and subsequent chemical conversion cascade reactor will be manufactured to produce ethylene oxide as intermediate for oligo-/polyethylene glycol synthesis. This will prove the achievement of the quantified techno-economic targets of CO2EXIDE.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences electrochemistry electrolysis
- natural sciences chemical sciences organic chemistry alcohols
- natural sciences chemical sciences catalysis
- natural sciences chemical sciences organic chemistry aliphatic compounds
- engineering and technology environmental engineering energy and fuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.5. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.1.5.3. - Sustainable, resource-efficient and low-carbon technologies in energy-intensive process industries
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-IND-CE-2016-17
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80686 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.