Objective
Elucidating the causes of the awesome phenotypic diversity observed in natural populations is a major challenge in biology. It is now clear that the understanding of traits is not only hampered by non-heritable factors such as the environment and epigenetic variation, but also confounded by the lack of complete knowledge concerning the genetic components of traits. More than a century after the rediscovery of Mendel’s law, the genetic architecture of traits still resists generalization. First, this is increasingly evident as shown by recent genome-wide association studies, where identified causal loci explained relatively little of the heritability of most complex traits, leading to the “missing heritability”. Second, we also have recently shown that monogenic mutations can display a significant, variable and continuous phenotypic expression, called expressivity, across different genetic backgrounds. Altogether, these observations clearly indicate that a better understanding of the genetic architecture of traits requires a deeper knowledge of the variability of the phenotypic effect of genetic variants across an entire population. In the frame of the Phenome'N'al project, I plan to marry classical but high-throughput genetic methods with new approaches based on population genomics to connect the phenotypic and allelic landscape by taking advantage of the powerful budding yeast model system. With our recent completion of the whole genome resequencing of over 1,011 natural isolates (http://1002genomes.u-strasbg.fr/(opens in new window)) plus the accompanying phenotyping efforts, we have currently one of the best understanding of the natural genetic and phenotypic diversity of any eukaryote model system to date. These datasets will lay the foundation of Phenome'N'al, which aims to dissect the inheritance, expressivity and genetic interactions hidden behind the phenotypic landscape of an entire natural population.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences genetics mutation
- natural sciences biological sciences genetics genomes
- social sciences law
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
67081 Strasbourg
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.