Objective
Biodiesel production is usually accompanied by the production of 10% (w/v) glycerol as main low-value by-product, making it not yet economically competitive to petroleum-based processes. Recently, Ustilaginaceae fungi have attracted more attention due to their abilities of using crude glycerol to produce chemicals of industrial interest. Unlike established filamentous fungi, many Ustilaginaceae strains can grow in haploid and unicellular form, which are remarkably advantageous for industrial applications. Of note, U. trichophora was reported to have the highest titre for microbial malate production, even if the yield is still low. If the carbon lost during cultivation is suppressed, U. trichophora will be a novel candidate for industrial malate production and contribute directly to crude glycerol valorisation. However, the metabolic network and its function are not described for any Ustilaginaceae species. Isotope-assisted metabolomics approaches are powerful in exploring the metabolic network operation. By capturing the snapshot or the kinetics of metabolite pools, these approaches can guide metabolic engineering strategies to alter metabolic flux distribution and maximize target compound production. Therefore, this study aims to decipher the structure and dynamics of the metabolic networks of U. trichophora by using isotope-assisted metabolomics approaches. Results obtained in this research will guide ongoing efforts in metabolic engineering to maximize malate production from crude glycerol of U. trichophora. Further contributions will be made beyond the envisaged industrial applications, as the Ustilaginaceae are also investigated in the context of host-pathogen interactions and fundamental cell biology.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology industrial biotechnology metabolic engineering
- natural sciences biological sciences cell biology
- natural sciences biological sciences microbiology mycology
- natural sciences biological sciences biochemistry biomolecules lipids
- engineering and technology industrial biotechnology biomaterials biofuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
52062 Aachen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.