Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

STARs at the EXtreme

Project description

Research sheds new light on the formation of first stars

Soon after astronomers realised that the universe constantly expands and that a massive explosion started it all 13.8 billion years ago, there have been burning questions about the formation of the first stars. Current models indicate that they are made of matter that has been processed by Big Bang nucleosynthesis and dark matter, very different to that found in younger stars. The aim of the EU-funded STAREX project is to determine which observable features can be used to determine the composition, the properties and the physics of the first stars in the universe. Using advanced numerical tools, it will provide a detailed description of the dynamics of single or binary stars in the first stellar clusters.

Objective

The first stars in the Universe are extreme objects. Extreme in their composition: they are made of material having been processed only by the Big Bang nucleosynthesis, and having a content in dark matter likely very different from the one of the present-day stars. Extreme in their properties: one of the most important properties is their mass that might reach values as high as even 100 000 solar masses (supermassive black-hole seeds). Their properties may differ from the today massive star populations also by their likely fast axial spins, the processes of mass loss, their magnetic fields, multiplicity. Extreme in their physics: born in over densities made mainly by dark matter, the physics of candidate dark matter particles may have a significant effect on their evolution and produce what has been called dark or frozen stars, i.e. stars sustained by dark-matter particle annihilation. The aim of STAREX is to determine which observable features can be used to constrain the composition (baryonic and dark matter), the properties (masses, rotation, magnetic field, multiplicity) and the physics of the first stars in the Universe. These observables will be collected by present-day and future facilities as, for instance, the JWST, ELT, adLigo, VIRGO, LISA and are linked to ionising fluxes, nucleosynthesis, radiation of both stellar populations and transient events, and gravitational waves. STAREX will explore new physical processes, build and use new numerical tools, provide observables that will account together for a sophisticated description of the physics of individual stars, single or in binary systems, and for the dynamics of the stars in the first stellar clusters. STAREX is at the crossroad of topics such as stellar physics, nucleosynthesis, hydrodynamics, evolution of galaxies, and will potentially engender ground-braking consequences for observational cosmology, astrophysics and even fundamental physics (fluid dynamics, dark matter properties).

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-ADG

See all projects funded under this call

Host institution

UNIVERSITE DE GENEVE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 500 000,00
Address
RUE DU GENERAL DUFOUR 24
1211 Geneve
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Région lémanique Genève
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 500 000,00

Beneficiaries (1)

My booklet 0 0