Descripción del proyecto
Algoritmos predictivos para combatir el cáncer de mama
El cáncer de mama es la enfermedad que más muertes relacionadas con el cáncer provoca en mujeres en todo el mundo. La implicación de la heterogeneidad de los tumores en la evolución y recidiva del cáncer de mama está bien documentada y aboga por el desarrollo de tratamientos personalizados. La aplicación de la medicina personalizada requiere el descubrimiento de nuevos biomarcadores, basados en el análisis de datos ómicos junto con información clínica. Se trata de un ámbito difícil que requiere métodos matemáticos sofisticados combinados con un análisis biológico profundo. El proyecto PredAlgoBC, financiado con fondos europeos, ha reunido a médicos, matemáticos y bioinformáticos para el desarrollo de algoritmos de aprendizaje automático que busquen biomarcadores predictivos para el tratamiento del cáncer de mama. La identificación de nuevos biomarcadores y su aplicación en la práctica clínica orientará a los médicos a la hora de elegir la mejor opción de tratamiento.
Objetivo
Breast cancer is the cancer with the highest incidence in women worldwide, and is the leading cause of cancer-related death, mainly due to treatment resistance. Recently, tumor heterogeneity has been described as one of the key driver in treatment failure. Indeed, tumor is not a homogeneous entity to treat, but a complex association of subclonal populations driven by their own genetic alterations, and immune and stromal cells from microenvironment. Breast cancer subtypes and tumor heterogeneity advocate for the development of tailored, personalized treatments, but so far, the discovery of efficient predictive markers has been compromised by the lack of adapted biological models and methodological tools.
The recent developments of high-throughput methods for bulk and single-cell analyses has generated large ‘omics’ datasets from patients, stored in open access databases (ArrayExpress, GEO). Combining these numerous datasets will grant a sufficient statistical power to reveal a comprehensive overview of tumor complexity. However, this data mining is currently limited by methodological challenges like cross-platform normalization and the difficulty to analyze complex data structure with high dimension observations. To overcome these issues, I propose to implement a multidisciplinary project at the interface between mathematics, biology, and information technologies.
With the support of the mathematicians and bioinformaticians from the Bioinfomics unit of the regional comprehensive cancer center (ICO), I will develop and implement machine-learning algorithms in the search of predictive biomarkers for breast cancer treatment. This innovative strategy will lead to personalized medicine in breast cancer by guiding clinicians in the selection of the optimal therapeutic option. Moreover, this generated pipeline for predictive marker discovery could be further adapted for the treatment of other cancer types.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales informática y ciencias de la información ciencia de datos extracción de datos
- ciencias médicas y de la salud medicina clínica oncología cáncer de mama
- ciencias médicas y de la salud ciencias de la salud medicina personalizada
- ciencias naturales matemáticas
- ciencias naturales informática y ciencias de la información inteligencia artificial aprendizaje automático
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
MSCA-IF-EF-ST - Standard EF
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) H2020-MSCA-IF-2018
Ver todos los proyectos financiados en el marco de esta convocatoriaCoordinador
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
49100 Angers
Francia
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.