Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Machine learning prediction for breast cancer therapy

Descrizione del progetto

Algoritmi predittivi per combattere il carcinoma mammario

Per le donne, il carcinoma mammario è la principale causa di morte correlata al cancro a livello globale. Sono state ampiamente documentate le ripercussioni dell’eterogeneità tumorale nella progressione e nella ricaduta del carcinoma mammario, il che spinge allo sviluppo di trattamenti personalizzati. La realizzazione di farmaci personalizzati richiede la scoperta di nuovi biomarcatori, basati sull’analisi di dati omici e sulle informazioni cliniche. Si tratta di un settore impegnativo che richiede sofisticati approcci matematici abbinati ad analisi biologiche approfondite. Il progetto PredAlgoBC, finanziato dall’UE, ha riunito medici, matematici e bioinformatici al fine di sviluppare algoritmi di apprendimento automatico per la ricerca di biomarcatori predittivi mirati al trattamento del carcinoma mammario. L’identificazione di nuovi biomarcatori e la loro adozione in ambito clinico guiderà i medici nella scelta dell’opzione terapeutica ottimale.

Obiettivo

Breast cancer is the cancer with the highest incidence in women worldwide, and is the leading cause of cancer-related death, mainly due to treatment resistance. Recently, tumor heterogeneity has been described as one of the key driver in treatment failure. Indeed, tumor is not a homogeneous entity to treat, but a complex association of subclonal populations driven by their own genetic alterations, and immune and stromal cells from microenvironment. Breast cancer subtypes and tumor heterogeneity advocate for the development of tailored, personalized treatments, but so far, the discovery of efficient predictive markers has been compromised by the lack of adapted biological models and methodological tools.
The recent developments of high-throughput methods for bulk and single-cell analyses has generated large ‘omics’ datasets from patients, stored in open access databases (ArrayExpress, GEO). Combining these numerous datasets will grant a sufficient statistical power to reveal a comprehensive overview of tumor complexity. However, this data mining is currently limited by methodological challenges like cross-platform normalization and the difficulty to analyze complex data structure with high dimension observations. To overcome these issues, I propose to implement a multidisciplinary project at the interface between mathematics, biology, and information technologies.
With the support of the mathematicians and bioinformaticians from the Bioinfomics unit of the regional comprehensive cancer center (ICO), I will develop and implement machine-learning algorithms in the search of predictive biomarkers for breast cancer treatment. This innovative strategy will lead to personalized medicine in breast cancer by guiding clinicians in the selection of the optimal therapeutic option. Moreover, this generated pipeline for predictive marker discovery could be further adapted for the treatment of other cancer types.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MSCA-IF-EF-ST - Standard EF

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-MSCA-IF-2018

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

INSTITUT DE CANCEROLOGIE DE L'OUEST
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 184 707,84
Indirizzo
15 RUE ANDRE BOQUEL, CS10059
49100 Angers
Francia

Mostra sulla mappa

Regione
Pays de la Loire Pays de la Loire Maine-et-Loire
Tipo di attività
Research Organisations
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 184 707,84
Il mio fascicolo 0 0